- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Hahn, Jin-Oh (2)
-
Kao, Yi-Ming (2)
-
Kinsky, Michael (2)
-
Tivay, Ali (2)
-
Bighamian, Ramin (1)
-
Chalumuri, Yekanth Ram (1)
-
Kramer, George C (1)
-
Kramer, George C. (1)
-
Salsbury, John R (1)
-
Salsbury, John R. (1)
-
Sampson, Catherine M (1)
-
Sampson, Catherine M. (1)
-
Scully, Christopher G. (1)
-
Shah, Syed A (1)
-
Shah, Syed A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a virtual patient generator (VPG) intended to be used for preclinical in silico evaluation of autonomous vasopressor administration algorithms in the setting of experimentally induced vasoplegia. Our VPG consists of two main components: (i) a mathematical model that replicates physiological responses to experimental vasoplegia (induced by sodium nitroprusside (SNP)) and vasopressor resuscitation via phenylephrine (PHP) and (ii) a parameter vector sample generator in the form of a multidimensional probability density function (PDF) using which the parameters characterizing the mathematical model can be sampled. We developed and validated a mathematical model capable of predicting physiological responses to the administration of SNP and PHP. Then, we developed a parameter vector sample generator using a collective variational inference method. In a blind testing, the VPG developed by combining the two could generate a large number of realistic virtual patients (VPs), which could simulate physiological responses observed in all the experiments: on the average, 98.1% and 74.3% of the randomly generated VPs were physiologically legitimate and adequately replicated the test subjects, respectively, and 92.4% of the experimentally observed responses could be covered by the envelope formed by the subject-replicating VPs. In sum, the VPG developed in this paper may be useful for preclinical in silico evaluation of autonomous vasopressor administration algorithms.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Kao, Yi-Ming; Sampson, Catherine M.; Shah, Syed A.; Salsbury, John R.; Tivay, Ali; Bighamian, Ramin; Scully, Christopher G.; Kinsky, Michael; Kramer, George C.; Hahn, Jin-Oh (, IEEE Transactions on Biomedical Engineering)
An official website of the United States government
